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Dear readers, please mark all doubts, correct all that you can, write questions to improve the book

CHAPTER 1.   INTRODUCTION

We believe that intelligent robots of the future will use the most powerful computing technology of the time. We believe also that in the near future the most powerful computing technology will be quantum. Thus a new type of robots will appear someday –  quantum robots. This book is a speculation about the nature and technology of such robots. Because the concept of a quantum robot is new, this book is only an introduction and many questions will remain unanswered.
Our book is written with young researchers in mind. We expect the reader to have only high school background in algebra and physics. After each chapter there are problems for individual solution that should help the reader in learning the material.  
1.1. Why Quantum Computers are superior to classical Computers.
This book is devoted to some aspects of designing quantum robots. By a quantum robot we understand a robot that disposes at least one of the following technologies:

1. Quantum information processing – quantum computing,

2. Quantum sensors,

3. Quantum communicating capabilities. 
One may ask “Why quantum computers are of interest and why such computers are  more powerful than standard computers of year 2010 realized in CMOS technology? “
1. First, a quantum computer operates on qubits (quantum bits) and not bits. Much more information can be contained in a qubit than in a bit. While a bit has only one bit of information, 0 or 1, the qubit can be represented by a point on a sphere (this sphere is called a Bloch Sphere [Nielsen00]). So, theoretically qubit has an infinite capacity. However, the information in the qubit is so-called “hidden” which means that to know this information some special processing must be executed and some of this information will be lost. If we measure the qubit in the simplest way, it is probabilistically converted to a normal bit, thus we measure the value of 0 or 1, with certain probabilities. Concluding, the memory built of qubits can store much more information than a standard memory, but the use of information from this memory is not easy.
2. Second, normal binary logic gate can be in one state at a time, 0 or 1. But a quantum state can be in a superposition of states |0( and |1(, which are quantum states (basis states) corresponding to binary values 0 and 1, respectively. All the superposed states can be represented as points on a ball (sphere) called Bloch Sphere. The basis states |0( and |1( are just two points on the Bloch Sphere. Superposition is of the form (|0( + (|1( where ( and  ( are complex numbers called quantum amplitudes. These values ( and  ( are so constrained that they correspond to all points on the surface of the sphere. It can be showed that this location of states on the sphere is equivalent to |(|2 + |(|2 = 1. The superposed states being superpositions of basic states mean that a quantum circuit calculates in parallel on all basic states from the superposition. It can be thus compared to a parallel computer that operates on many data at the same time. The scale of this parallelism can be, in principle, many orders of magnitude higher than in any classical parallel system available now or ever. This is called quantum parallelism. 
3. When measured, a bit collapses to basic state |0( with probability |(|2 and to basic state |1( with probability  |(|2. Thus a probabilistic computer can be easily simulated on a quantum computer. It is known in computer science that a (classical) probabilistic computer is more powerful than a deterministic (classical) computer. Based on the above property of probabilistic measurement a quantum computer is at least as powerful as a classical deterministic computer or a classical probabilistic computer. Quantum computer can be in practice much more powerful than any other known model of computing, but it is so only for some problems. In principle, probabilistic and deterministic computers can be simulated on quantum computers, but there is usually no need to do this. The quantum model of computing is so much powerful that we should use its full power when using quantum computing technology, otherwise it would be not worthy to use it. Constructing however these fully quantum computers there is sometimes a need to realize some specific classical circuits or algorithms as quantum circuits or parts of quantum algorithms.   
4. There is one more source of power of quantum computers, the most important one. It is called entanglement and it results from the fact that quantum amplitudes ( and ( are complex numbers. Entanglement is the computational resource that exists only in quantum mechanics. It does not exist in classical physics and is difficult to simulate in it. Entanglement is treated now by physicists as a fundamental resource of Universe, on par with matter, energy and information. Now only three types of computing are known: deterministic, probabilistic and entangled. A quantum computer is the only known model of computing that can realize these all types of computing. Entanglement exists only for quantum systems with more than one qubit. The entanglement is a constraint on combined  states of qubits that the quantum system can have. When we add or multiply classical probabilities we never get a value zero. However by adding and multiplying quantum amplitudes a zero can be created, which means that some basis states are excluded from the superposition and thus cannot be measured. This determines certain constraint on states that can be measured. Superposition and entanglement are  fundaments of creating quantum states being solutions in many quantum algorithms. Excluding some states, entanglement selects other states to be measured, thus leading to solutions of problems. This is used for instance in quantum search algorithms.
5. Quantum computers can be equipped with quantum sensors. These highly sensitive sensors can have their quantum states (qubits) entangled with particles in an environment (other qubits). Quantum sensors integrated with quantum circuits will allow to sense information non-available to standard computers. Such sensors will be thus a new entity in robotics, communication, sensing and many other applications.

6. Quantum computers will be able to communicate with other quantum computers using quantum communication channels that will be impossible or at least very difficult for eavesdropping. 

1.2. Towards Quantum combinatorial problem solving.
1.2.1. The idea of using a quantum computer to control a robot

It is popularly known, even among non-specialists, that modern computers and all integrated circuits are designed by humans who use computers equipped with Computer-Aided-Design software. Humans are just not able to deal with the enormous complexity of  designing modern hardware without the use of computers in all stages of planning, conceptualizing, designing, optimizing, verifying, validating and testing modern digital systems.

It is however less well known that several basic problems in Computer Aided Design of standard logic circuits are “NP-hard”. NP stands for non-polynomially, relating to the complexity that is non-polynomial. These are known problems hard to solve. The word NP-hard means that these problems are optimization problems that are counterparts of the “NP-complete” decision problems. NP complete problems are decision problems that allow verifying that S is a solution to problem P in polynomial time, but these problems need an exponential time to find the solution. The solution to an NP problem is of Yes/No type. An example of such problem is the Satisfiability Problem in which one has a Boolean formula and has to answer a question: “does there exist an assignment of values to Boolean variables from the formula such that this formula is satisfied?” Many problems of CAD can be thus reduced to SAT (satisfiability) and few similar basic combinatorial search problems. These are called the  Constraint Satisfaction Problems or  CSP problems for short.  CSP problems are those that we have a set variables and a set of constraints on values that can be assigned to these variables. We are looking for a mapping of these variables to their values such that all constraints are satisfied. For instance, a problem of coloring a graph with the minimum number of colors such that every two adjacent nodes (nodes connected by an edge) have different colors is a CSP problem. The minimum number of such colors for a given graph G is called the chromatic number of graph G. Future quantum computers will be designed using CAD tools orders of magnitude more complicated that current CAD tools. Open question is what will be the future CAD tools to design quantum computers on levels of system, subsystem, communication, block, logic, sensor interface and layout/physical design.
Similarly in the research areas of Artificial Intelligence, Pattern Recognition and Robotics, the ability of a computer to solve high dimensional combinatorial problems in real time is very important. Most problems can be reduced to few combinatorial search problems, these problems are very similar or essentially the same as in CAD. Artificial Intelligence and Computational Intelligence algorithms will be more and more used in Intelligent Robotics systems of the future. Observe that robotics always uses the most advanced hardware and software technologies as it is always hungry for  speed, memory and computer power. Another new approach that will be gaining momentum in robotics and embedded computing is Evolutionary Hardware, which models Darwinian Evolution directly in special hardware processors to solve decision or optimization problems. Similarly, as the Data Mining and Machine Learning methods will be used in these areas, we will observe the synergism of research in all these areas and their increased use in new generations of robots. Artificial Intelligence design will be integrated with system and logic design of future quantum computers. When we mention robots, we mean robots in the widest sense as any system that includes sensing (perception), processing (intelligence, knowledge) and acting (motion) abilities. In this sense a modern camera or a car are also robots, as they have many sensors, processors and motors built in. Sometimes this wide definition of robots overlaps with what is called the embedded systems.
 Classical circuits are designed using AND, OR and NOT gates (that realize logic or Boolean operators). We call it the AND/OR base of logic circuits. There are several types of quantum computers but the most known is the so-called “circuit model of quantum computer” that originates with Deutsch [ref]. It will be of our interest in this book. Other models are equivalent to it.  It is natural and convenient to describe some circuits in the “circuit model of quantum computers” as designed using the gates: AND, EXOR and NOT. These circuits are also reversible (one-to-one mapping between input and output vectors).  Such circuits will be introduced in Chapter 2 of this book. The synthesis and optimization problems related to building future quantum computing systems will be more difficult than the classical CAD problems, as in the classical (non-quantum) reversible logic there is no possibility to find a general structure like AND/OR or no general decomposition of a large problem to smaller ones. Standard AND/EXOR logic methods cannot be used without modifications when applied to designing quantum circuits. To make our book comprehensive we will explain designing quantum circuits on all levels from bottom to top, without however going deeply to quantum physics. We will assume some simple basic quantum gates that can be physically realized and we will build circuits and algorithms on top of them.
The field of synthesis of binary (classical) reversible logic is relatively new [Fredkin, Toffoli]. The synthesis problems become even more difficult when one designs and optimizes  quantum circuits. The same difficulties will appear while designing practical realizations of quantum circuits and algorithms to solve CSP problems for future quantum  robots. The contemporary algorithms for CSP problems of robotics and AI  are based mostly on heuristic search, artificial neural nets and evolutionary programming ideas. Future algorithms for quantum circuits will use quantum counterparts of these ideas. Modern algorithms to synthesize quantum circuits use principles similar to above,  or are based on matrix algebra. Modern CAD methods to synthesize quantum circuits [ref Perkowski old , Miller, Markov  Shende] are applicable only to small quantum circuit specifications.  In this book more efficient methods will be systematically presented.
The reason of the difficulties with automatic design of quantum circuits is that a model of a quantum circuit is much more complex than a model of a standard logic circuit. For instance, Richard Feynman observed that quantum mechanics problems are very difficult to solve on a classical computer. This observation caused him to conclude – “we need a quantum computer to model quantum mechanical phenomena efficiently”. While working on the problem of testing quantum circuits, Biamonte and Perkowski [Biamonte04, Biamonte05, Biamonte05a, Biamonte05b] observed that testing of quantum circuits is much simpler when quantum phenomena themselves are applied and a set of superposed test vectors is given to a quantum circuit rather than one test vector at a time. Therefore the following idea may came to mind – “May be similar bootstrapping can exist in the area of synthesizing quantum circuits and algorithms? May be a quantum computer can allow to solve efficiently CSP problems for which the standard computer is very inefficient?” This book, among other new ideas, tries to answer this question and realize this intuition by automatic designing conceptual quantum circuits, blocks, oracles and algorithms. These methods will become useful to solve combinatorial problems of computational intelligence and CAD for quantum computers with the introduction of practical quantum computers on which these algorithms will be implemented.
1.2.2. Solving Constraint Satisfaction problems Using Grover Algorithm
Grover algorithm to search unstructured data base is perhaps the most important and practical quantum algorithm invented so far. “Unstructured data base” means that we want to find one item in the data base on which we can evaluate some function to verify if this element is a “solution”. There is however no any structure in this data base that would allow us to organize efficient rather than blind search. For instance, that would exclude some sets of elements after finding some partial solutions. This is a situation of no information at all. In such case the only thing we can do is to take all elements one by one and check each if it is a solution. In worst case it will take to check all but one elements of the data base if we know that there is one solution in this data base.

In this book we give a new approach to solve several hard CSP problems with applications to Computer Aided Design, and particularly logic synthesis, as well as widely understood robotics. Our approach is based on quantum oracles and Grover algorithm. Solving this category of problems will be one of the most important applications of practical quantum computers. Grover algorithm speeds up all NP problems quadratically. There are thousands of such problems, many of them of high practical use; especially in CAD of classical digital circuits, pattern recognition, robot vision, planning, scheduling and other areas of importance.

We assume here a hypothetical, yet to be built quantum computer, and analyze what would be its use in the area of solving CSP problems. It has to be pointed out that although we speculate on the existence of a quantum computer with tens of thousands of qubits, we do not speculate on the physical reality of the quantum phenomena such as quantum parallelism, superposition and entanglement, since all these amazing phenomena have been already verified experimentally [Bennett93, Cleve98, Knill05, Nielsen98]. For instance the Grover algorithm and Shor algorithm have been already both   experimentally verified in several quantum technologies [Chuang95, Chuang98, Grover98]. Thus the author’s situation can be compared to that of George Boole and Charles Babbage when they speculated about the power of computers based on mechanical switches and Boolean algebra in year 1850 – the theory exists and the experimental base exists, so that such computers can be built in principle. But more theory is needed to build practical circuits and more theoretical/experimental/technical work is necessary to develop adequate technology for practical use. Quantum robots will be created one day because humanity never goes back on existing scientific and technological possibilities. The problem is only how to build the theoretical fundament for this new emerging research area of “Quantum Robotics”. Observe that it took nearly 100 years from the development of Boolean Algebra to its practical use to build computers. We believe that this process will be faster from the development of theory (this book) to its practical implementation in future quantum computers and robots.
1.3. Solving problems by reducing them to basic combinatorial search problems.
Many generic combinatorial problems are known in classical logic synthesis such as satisfiability, graph coloring, binate covering, spectral transforms based on butterflies and others. Many of these problems are known as Constraint Satisfaction Problems where some solution must be found that satisfies a set of constraints such as equalities and inequalities of numerical values defined on nodes of some graph. In many problems the solution must additionally optimize certain cost function (such as energy). Spectral transforms are another wide class of problems with many applications, just to mention the ubiquitous Fast Fourier Transform or Fast Cosine Transform used in MPEG.

We will demonstrate in this book that these two classes of problems (and some other problems) still remain as a fundament for efficiently solving computationally intensive problems in robotics. How then these problems can be solved on a quantum computer? How to use a quantum computer to calculate spectra of Boolean  functions? How to use a quantum computer to minimize reversible circuits and   reversible automata? How to plan robot behaviors? How to speed-up robot planning, vision, reasoning, and learning using concepts of quantum mechanics?
Can this be done in principle? Nobody is surprised now that a standard computer can minimize its own circuits better than any human on the earth, but 50 years ago the top authorities believed that only a human can optimize logic circuits. The authors of this book are deeply convinced that future quantum computers will be able to solve problems that are absolutely out of reach not only for a human, but also for the whole Earth supercomputers of 2011 connected by the Internet. These will be not only some isolated and abstract problems like factoring large numbers [Shor94] but the real-life problems in weather prediction, global economics, designing new drugs or designing quantum computers. We believe that all these problems can be reduced to some finite set of problems for which FPGA-like quantum hardware will be built (FPGA stands for Field Programmable Gate Array).  In this book we introduce the model of FPGA-like quantum computer as a coprocessor of a standard computer.
What is a standard (binary logic) FPGA? This is a relatively new technology [ref] in which the user can program not only the memory as in a standard computer, but can program also gates, blocks and their connections using special hardware design languages (such as Verilog or VHDL) and synthesis/optimization/mapping (CAD) software. This way the digital designer can practically “build his own computer”, with his own architecture and for any given task that can be programmed by him. FPGAs have truly revolutionized digital design since 1986 and are used in many practical products from simple controllers to supercomputers. We introduce in this book also a model of FPGA-like parallel quantum computer.
Concluding, our model of a quantum computer proposed in this book is a multi-purpose, parallel, programmable, reconfigurable, quantum accelerator connected to a standard computer.
1. Our model is multi-purpose because it is not a universal computer to speed up arbitrary problem but is specialized for only some classes of problems. These classes include however many problems. There is no need to build quantum computers for simple standard tasks, they should be built for new problems that have extremely high time and memory complexity for today’s standards. 
2. Our model is parallel because we have available in our system not just a single quantum computer but a collection of computers that share information.

3. Our model is programmable in an analogous way as FPGAs are programmable in modern VLSI technology. FPGA is hardware programmable in classical CMOS technology and our Quantum FPGA is hardware programmable in quantum technology (regardless the technical details of a quantum technology that realizes the so-called “quantum circuit model of computing”).
4. Our model is reconfigurable in the same way as FPGA systems are reconfigurable in modern system design. This means that the top-level structure of the system can be reconfigured dynamically to become another system. Thus a vision processor can be modified to a DSP processor or a sorter. When the basic structure of a quantum reprogrammable hardware is created, it can be reprogrammed very quickly to an arbitrary given application. The existing quantum technology already allows for this  reconfigurability, but the quantum circuits are not yet scalable.
5. Our general model is a quantum computing system, as some of the processors (except of the master/programmer processor) in the parallel system are quantum processors.

6. Our quantum computer  is called an accelerator to emphasize that only some problems are accelerated, not all problems. This accelerator will be in future intimately interconnected with standard computer. Nobody would ever need a quantum computer for word processing, standard laptop will obviously suffice. Many tasks that are now executed on standard processors will move in future to quantum hardware as we will find out that they need more processing power. It is for instance very likely that future computer games will be accelerated on quantum computers, as it is a perfect hardware to simulate any kind of physical phenomena (rendering, shading, motion, biology).

1.4. Combinatorial Problems in synthesis and optimization of circuits.
In future, Quantum computers themselves will be used to solve CSP problems used in optimization and synthesis of quantum circuits and algorithms. It will be the same way as the standard computers are used now to synthesize classical circuits from VHDL specifications (VHDL is Very High Level Design automation Language to specify hardware for VLSI and FPGAs). To aid in inventing these new types of algorithms a new generalized and unified approach is created and investigated in this book.  
This new approach should be of interest to the quantum logic synthesis community as well as Machine Learning community because of its analogies and extensions to that of the Boolean logic, classical Reed-Muller Logic, classical reversible logic or other areas in which CSP problems are formulated. Reed-Muller logic is a specialized spectral approach of logic structures invented by Zhegalkin, Reed and Muller that uses AND and EXOR gates as its base. Classical Reversible Logic was invented by Feynman, Toffoli and Fredkin [Feynman82, Feynman96, Fredkin82]. Classical reversible logic research uses gates such as the Fredkin Gate, Toffoli Gate and Feynman gate. These gates are very different from the gates used in classical logic.  Recent research in reversible logic research area can be found in [Lukac02, Lukac02a,  Lukac05, AlRabadi02, Khan01, Mischenko02, Khlopotine02, Negotevic02, Dill97b, Perkowski02, Yang05]. Important advantages of reversible circuits are their low-power and high-testability. Biamonte and Perkowski extended the classical test generation algorithm for Reed-Muller logic circuits, created by Reddy, to quantum circuits, using an equivalent of Positive Polarity Reed-Muller logic (PPRM). PPRM is a one type of Reed-Muller Logic, the simplest one. It represents a Boolean function as an EXOR of products (AND gates), each product on non-negated variables only. Biamonte and Perkowski showed that by applying superposed test vectors to a quantum circuit instead of using standard tests, the testing time can be dramatically reduced. It is however known that Sarabi and Perkowski [Perkowski95, Perkowski99d, Sarabi99, Chang99], Sasao [Sasao91a], Falkowski [Falkowski03], Bhattacharya [Bhattacharya1] and others generalized the results of Reddy [Reddy72] to even more complex structures than PPRM, still having  high testability. These extended  ideas can be thus perhaps used to quantum circuits as well. First one has however to find the quantum counterparts of such Reed-Muller logic circuits, which task has been not yet done in the literature. In this book it will be shown how KRM, FPRM, GRM, ESOP and other canonical forms and equation types of Reed-Muller logic can be extended and generalized to highly testable quantum circuits. Because of the wide scope of the book the quantum testability issues themselves [ref], will not be discussed here.
The complexity of synthesizing large circuits of  reversible and quantum types considerably exceeds the complexity of designing classical circuits. Efficient methods for synthesizing them are therefore necessary. The research efforts  of  researchers world-wide have been only partially successful and there are still no CAD tools for most important problems in quantum circuit synthesis. This book outlines approaches to CSP problems in the synthesis of AND/EXOR, reversible and quantum circuits, which find  applications in Machine Learning, Operations Research, Vision and robotics. 
Moreover, we speculate also on the future CSP tools for this class of problems that will become possible with the availability of quantum computers. One can thus say that this book tries to develop engineering methods to solve CSP problems on the circuit model of quantum computing. Work done by Peter Shor on quantum integer factorization opened new approach to computer security, (as related to RSA cracking). It enabled a new technology.  Similarly quantum solvers of  CSP problems will enable new technology. However, while Shor’s invented a new quantum algorithm for this purpose, quantum CSP solvers use mostly Grover’s algorithm and its extensions.

We aim also that our synthesis methods for quantum circuits will be not for theoretical specifications only (like reversible truth tables) but for practical data that may appear in designing oracles for practically large problems. These circuit specifications are irreversible and hierarchical, thus allowing to specify a general class of Grover and Grover-like oracles for large problems and not only for toy problems. Our methodology outlined on many examples in this book can be used by other researchers for their own problems if these problems are reducible to Grover algorithm and other basic quantum algorithms presented in the book, such as Cerf-Wiliams-Grover, solving linear equations, Quantum FFT or other quantum spectral approaches.
1.5. New General-Purpose Search Approaches for classes of combinatorial problems.
We will present here the development of a general-purpose quantum search/synthesis/learning meta-algorithm Quantum Search Problem Solver (QSPS) to be used in solving highly complex combinatorial problems, especially the Constraint Satisfaction Problems. QSPS is a new “meta-algorithm” and a general constructive learning methodology. It is applicable for several types of CSP problems. For instance, QSPS was applied to design  logic circuits (classical and quantum), as well as for software applications to CSP in Data Mining, Machine Learning, off-line Evolvable Hardware, and Knowledge Discovery in Databases (KDD). Our approach is therefore very general. 
The QSPS method is based on the general concept of search in certain space of solutions and candidates for solutions. Our search approach has a variant for classical search (serial or parallel). Another variant of QSPS is for parallel quantum search. The classical search is of course only a special case of the parallel quantum search. Both the classical and the quantum algorithm variants presented here can be improved in future by others. Why we believe this point?  Looking to history of classical software search on standard computers one can observe that it was possible to find new better search methods long time after the concept of search was invented. For instance, the Iterative Deepening Search that we use in Chapter 6 was invented by Korf [ref Korf] many years after the classical depth-first search and A* search were created [ref]. Similarly in the area of quantum search new variants of Grover algorithm have been recently invented by both Lov Grover himself and other authors that are, in one or another way, better for some specific problem sub-domains than the original  “Grover Algorithm” [Cerf-Williams-Grover].

Most of our search ideas in quantum case are based on the Grover algorithm [Grover96], one of two most important quantum algorithms invented so far.  However, we not only use Grover as it is, but we wrap it around in a more general search system of parallel reconfigurable computers. This system uses parallelism of programming, parallelism of execution, heuristics, and reprogramming (as in FPGAs). It  calls Grover Algorithm for sub-problems, possibly with oracles that are adapted and modified. We call this the “dynamic approach to quantum problem-solving based on Grover Algorithm”.  By solving some class of problems using Grover Algorithm, we can learn certain parameters to improve the speedup of the next calls to the “Grover Processor”. For instance, when one knows the chromatic number of a graph, the optimal coloring of this graph can be found more efficiently by reducing the size of the oracle.  Reducing the oracle’s size leads to the reduction of the solution time of Grover Algorithm. We will discuss this and other reductions of problems to quantum processors. Any additional knowledge available to the system designer should be thus used in (parallel) quantum computing to improve the search efficiency. Observe that this is exactly the same problem-solving philosophy as the one used in standard contemporary parallel search algorithms.

Several applications of this quantum meta-learning algorithm will be presented in detail in chapters 15 – 19, including graph coloring, satisfiability, maximum cliques, DNF logic minimization (SOP), AND/EXOR logic minimization and others. One application is the minimization of incompletely specified data with FPRM. Fixed Polarity Reed-Muller Forms (FPRMs)  are extensions of PPRM forms. In FPRM every variable has the same polarity, it means it is negated or not negated, but it must be negated or not negated consistently in the entire expression. Thus if variable d is not negated in product term def, it is also non-negated in every other product term in the EXOR. For instance, F = ab’ ( acd ( b’d is an example of FPRM with variables a, c and d in positive polarity and variable b in negative polarity. Learning problems can be formulated with SOP (DNF) or FPRM logic expressions as structures to be learned from examples.
Another application of our algorithms is the minimization of the GRM (Generalized Reed-Muller) forms (mixed polarities of variables). In GRM every variable can be both positive and negative, but for every subset of variables there is only one product in the EXOR. For instance, if product abc is included, product a’bc cannot be included as these terms both correspond to the same set of variables {a, b, c}. FPRMs and GRMs are two most well-known types of the AND/EXOR expressions [Sasao93e]. As the quantum variant of this algorithm is not realizable now, because the largest quantum computers are only for 28 qubits [ref DWAVE], we may only analyze its simulated behavior and its predicted behavior on future quantum computers, comparing results of quantum algorithm with classical algorithms running on current computers.
1.6. Organization of the book.
This book introduces ideas in quantum logic design, quantum circuit structures and respective synthesis algorithms and also ideas in quantum algorithm design. We show applications of quantum algorithms and they may include quantum CAD. In a sense, therefore, “everything relates to everything” in this book. “We build quantum algorithms using quantum circuits to automatically design the next and more improved class of quantum circuits”. This multi-aspect core of the book makes the presentation difficult. Therefore we organizationally separate the book to parts that are relatively less interconnected. We need also some small text repetitions to simplify the presentation of the book.
The areas of logic design and algorithm design are respectively isolated, and they are linked by the fact that to build a practical quantum oracle one has to be able to optimize it from quantum gates. We will link these two ideas more in next chapters when all background will be already introduced. We can thus say that the book has five parts.

1. The first part (chapters 2 – 5) relates to the fundaments of quantum circuit design. We illustrate quantum gates and their primitives in some robotics applications and next we go into more detail of quantum gate design in some technologies.

2. The second part  (chapters 6 – 9) presents various efficient algorithms to synthesize quantum combinational circuits and quantum automata from gates. Both binary, multiple-valued and hybrid circuits are discussed.

3. Part 3 (chapter 10 – 13) presents quantum algorithms that have applications in quantum robotics. We discuss in detail the Grover, Cerf-Williams-Grover and Hogg Algorithms as the core of the book.

4. The fourth part (chapters 14 – 16) relates to the quantum oracles design for quantum search algorithms. Of course, as oracles are built from circuits, the reader has to be familiar with circuit design to understand fully the oracle design. 
5. Part 5 (chapters 17 – 19) presents applications of quantum algorithms in several problems of robotics.

1.6.1. New circuit structures for permutative quantum logic.
The organization of the chapters will be now outlined in more detail. Initially, it will be shown that logical forms for new families of algebras can be developed that are a good match with quantum hardware. These families of forms are analogous to the classical (Reed-Muller) AND-EXOR forms.  These families are like the building blocks for reversible circuits. The descriptions of these circuits allow also for an easy conversion of non-reversible specifications to those types of reversible circuits that are realized in quantum.  In chapters 2 and 3 we illustrate several simple examples of application of quantum circuit ideas to models of behavioral robots. These chapters serve also the task of explaining in practical settings of many quantum ideas.

In chapter 4, we will show in detail how the proposed basic gates are practically realizable in Nuclear Magnetic Resonance (NMR) technology and we mention briefly also other quantum implementation technologies. A complete logical hierarchy of expansions, trees, decision diagrams, and forms for this new family will be developed for use in oracles and other quantum (permutative) circuits.  These ideas are influenced on one hand by certain algebraic structures, both by those already used in quantum mechanics and by structures used in other technologies. On the other hand, our algebraic structures are influenced by the possibilities of real quantum technology such as those presented in papers of Brassard [Brassard04], DeVincenzo, Smolin, Barenco and others. 
Chapters 5 – 9 introduce various classes of quantum permutative circuits. Literal is a variable or its negation. Affine Boolean functions are EXORs of literals.  A new concept introduced in this book is that of “Affine gates” [Sazzad Thesis, paper].  As “Affine gate” we will define a classical quantum gate that is controlled by an arbitrary affine Boolean function. The classical quantum gate can be such as a Toffoli Gate or a Controlled-V Gate. Since affine functions are very cheap in quantum realization (as they include only inexpensive inverters and inexpensive Feynman gates – see chapter 4 for the costs of quantum gates), we use new affine gates instead of classical quantum gates. The “affine synthesis” approach can always lead to the improvements of circuit’s cost and speed if a respective synthesis algorithm is implemented. This  property results from the fact that the set of the new gates is a superset of the known gates. We introduce thus: “affine Toffoli gate”, “affine Fredkin gate” and “affine Controlled-Square-Root-of-Not gate”.
The introduced by us logic can also be implemented with hypothetical AND and EXOR gates and is a “regular logic”. It means, it has a regular structure of gates and connections, similarly to the well-known classical programmable Logic Arrays (PLAs). Our logic is thus a fundament of building quantum arrays with generalized  and affine Toffoli gates. (Quantum array is the another name used by authors for quantum circuits). Our affine AND/EXOR regular reversible array concept is somehow similar to classical PLA, but adapted to reversible quantum circuits. The high degree of quantum testability [Biamonte04], (which generalizes the classical testability concepts [McCluskey97]) for several expression types within the new families of the logics introduced here, provides further motivation for the introduction and study of affine AND/EXOR circuits. 
1.6.2. The role of AND-EXOR structured forms in quantum circuit synthesis
One of our approaches to using quantum computers for CAD problems considers the fact that the structured forms, such as FPRMs, are easier to optimize than the completely unstructured designs such as the general purpose reversible circuits from arbitrary gates. Therefore the quantum approach for FPRM minimization was generalized here for the first time to quantum minimization of Generalized Reed-Muller (GRM) forms (We developed also classical search algorithm for GRM and compared it to previous research based on the GA Algorithm [Koza99, Dill98]). The GRM equation type is a general, canonical expression of the Exclusive-Or Sum-of-Products (ESOPs) type, in which for every subset of input variables there exists not more than one term with arbitrary polarities of all variables.  The general-purpose AND-EXOR implementation has been shown in classical CMOS technology to be economical [ref]. Generally it requires fewer gates and connections than the AND-OR logic implementations of the same functions. GRM logic is also very highly testable, making it desirable for building permutative quantum oracles (like those used in Grover Algorithm). Most importantly, GRM logic is imminently practical for quantum arrays; this type of logic expression is immediately realizable in quantum hardware and the implementation can be directly compared with that of other algorithms for reversible logic. Our synthesis method converts an arbitrary non-reversible function to a reversible function as the byproduct of the design method itself. The only potential drawback (found only for rare circuits) is an increased number of ancilla qubits.  Ancilla qubits are additional qubits added to the circuit to allow the realization of a function that specified this circuit. The previous research (Dill, Sasao, Debnath) has shown the GRM equations are very difficult to minimize, especially with many don’t cares.  To date, the one exact minimization algorithm developed has required exhaustive searches and is extremely time consuming [Sasao94].  The approximate algorithms [Zeng95, Debnath95,  Debnath96, Debnath98] are faster and allow the minimization of larger, completely specified functions. It is however difficult to evaluate the quality of the circuits produced by these algorithms.  The goal of using the Quantum Search Problem Solving for GRM minimization is to create exact exhaustive and non-exact heuristic minimization techniques that will produce a higher quality of optimization, i.e. minimized circuits with fewer terms and literals, than that of other heuristic GRM minimization methods. Concluding, the GRM was selected as one example of many canonical forms of Zhegalkin hierarchy, for which some high quality solutions are known [Debnath95, Debnath96, Debnath98] and can be thus compared with. 

In the application of minimizing GRM forms, the CGRMIN Software [Software1] was utilized to create a GRM expression from the input data called the disjoint input/output table. Following this approach, an ECPS algorithm is implemented and Quantum Search Problem-Solving algorithm is described in this book. An interesting property of this search is that only the search space of all “correct”, functionally equivalent equations is searched, with the singular task of finding the best reduction. This is in contrast to previous algorithms.  With this limited-size search space the solutions have absolute guaranteed function coverage.  There is no application-specific knowledge incorporated into the method.  As such, the results are particularly remarkable since they compare favorably with that of the heuristic algorithms developed by top human experts over several years [Debnath95, Debnath96] in the past.  This composition/minimization technique, utilizing the GRM form for the specification of both specified and strongly unspecified functions, by its very nature, is applicable to not only hardware circuit design, but also to the off-line Evolvable Hardware and Data Mining. The methods like this, based on building oracles with complex regular structures in them (in particular butterflies, but also SAT-like circuits), are applicable to many CAD problem formulations.

It has been shown [Dill97, Dill98, Dill013, Miller97] that in logic synthesis process the exhaustive search approaches find circuit implementations that are often different in appearance from those that a human designer would produce.  In the outlined logic minimization process, in contrast to many known logic synthesis approaches, the human-designed, application specific heuristics are not the main mechanism to search for solutions. “Could non-human, quantum heuristics be found?” - it remains to be investigated. This book does not answer this question. For now we observe experimentally that humans operate only in small subsets of the entire solution spaces. Our software discovered new gates which were not found by humans; and which fact confirms this observation.
1.6.3. New concepts of synthesis algorithms for particular structures
The general class of quantum algorithms should have a wide applicability to logic problems; for automated logic circuit synthesis and optimization, machine learning, robotics, vision, and directed knowledge discovery. It is so because, as it will be shown in this book, all these research areas are closely related. Although some of problems and their reductions are known in classical algorithms, they are new in the quantum domain.
It is also desired that good partial heuristic methods be developed for the CSP class of algorithms. This is thus the second task to be achieved in our book. For instance, let us assume that we use the quantum Grover algorithm to solve the problem of “graph coloring” where every two adjacent nodes of a non-directed graph should get different colors. We may constraint the number of colors and ask if there is a coloring with k colors. Additionally, we may be asked to solve the graph coloring problem with the minimal number of colors. As we know, Grover algorithm will improve the complexity of finding exact minimum coloring from N to square-root-of N, where N is the number of all mappings of nodes to colors. Being able to solve this particular problem efficiently, most of the important optimization and decision problems that appear in CAD algorithms could be solved. However, the complexity of reducing these problems to one another is polynomial, so although in theory they are all NP-hard or NP-complete, practically it matters “what is the polynomial that describes the algorithm’s complexity?”. Polynomial 1010 * n 34 is practically not the same as 2*n polynomial. Therefore we are interested to reduce these complexities as such complexities of algorithms  as a^(1010 * n 34 ) and a2n are significantly different.

Universal algorithm is an algorithm that can solve a set of problems rather than a single problem. Often, many problems are polynomially reduced to a standard problem such as SAT and next solved using a SAT solver system. Instead of writing software for each problem separately, we just write software to reduce our problem to one of “universal problems” and we use “universal solvers”. The solvers use also often some universal data structures such as Binary Decision Diagrams [ref] or predicate calculus clauses [ref].

The mentioned above universality of optimization algorithms and the data structures used in them is the general promise of several areas of research: 
(1) SAT solvers – software, hardware or reconfigurable FPGA systems to solve the satisfiability problem, 

(2)  universal algorithms to solve in software or hardware classes of problems such as integer programming, linear programming or CSP,

(3) resolution-based programming languages such as Prolog; they use one automatic-theorem-proving mechanism, called resolution to solve problems reduced to predicate calculus,
(4) hardware accelerators – hardware systems, for instance FPGA based that solve some classes of problems. 
Some of these general problem-solving approaches, like the universal SAT solvers, are already used in modern research and industry. Similarly in our interest case; the universal solvers will be used in the research towards the promise of future “quantum CSP accelerators” that this book attempts to make a ground for.
Concluding on the “universality versus special domain” issue, this book develops algorithms that are: (1) quantum, (2) universal, (3) allow to create variants of the main algorithm, (4) allow to incorporate problem-specific knowledge into the algorithm.
1.6.4. The role of additional knowledge and heuristics in creating algorithms 
It is well known that in classical algorithms, any additional knowledge about the problem, like for instance the upper bound to the chromatic number of the graph being colored, can help to create a more efficient algorithm. We will show that the same is true for quantum algorithms of certain type, including the quantum algorithm for graph coloring. Among the several possible approaches to create such a meta-algorithm, the biologically motivated computations, such as evolutionary algorithms [ref], were viewed as attractive because of their generality and flexibility.  Thus, in the research and development process to create QSPS algorithm, the PSU group applied the biologically inspired, evolutionary processes of Genetic Algorithms and Genetic Programming. These algorithms were also sometimes combined with the, humanly designed, heuristic and search methods. This was done for instance in [Karen Dill, Martin Lukac, Normen Giesecke, ref, ref].
The final quantum search algorithm presented here is motivated, however, more by the quantum mechanics than by the biology. On the other hand, our approach also points out to the ubiquity of some basic ideas in all of the Nature: Quantum Evolution versus Darwinian Evolution. Because of its general applicability and combination of problem-solving methods, the algorithm is denoted as the Quantum Search Problem Solver (QSPS).   
1.7. New integrated approaches to search
1.7.1. QSPS or Quantum Search Problem Solver
Automated quantum problem-solving methods are developed in this book as its central theme.  Exploring evolutionary design and optimization techniques, investigating and discussing several design approaches we decided how to combine them for the design of a meta-algorithm -- the quantum-mechanically and biologically inspired, application-specific reconfigurable parallel (FPGA-like) hardware. General search heuristics are utilized independently and in combination with other techniques.  After several research approaches were investigated and analyzed, a new type of meta-algorithm is created in this book. It combines  artificial evolutionary methodologies for algorithm development, with Heuristic Search, Constraint Satisfaction ideas, and human-designed Expert Systems,. This approach is referred to as the Quantum Search Problem-Solving Algorithm (QSPS).  Our approach supports quasi-automatic, and in future - automatic, design of application-specific quantum algorithms. These algorithms will be for synthesis, minimization, decision making and other problems in quantum circuits, data mining, robotics, and other areas. The proposed approach is demonstrated on examples of  binary  logic, hardware circuit synthesis, “logic expression building” or Knowledge Discovery (i.e. explaining underlying principles by discovering meaningful patterns and rules about a data set), and logic minimization.  Although we concentrate on the new, proposed here, area of Quantum CSP (chapters  17 - 19), this research can also be directly applied with broad implications to the fields of Intelligent Robotics (chapter 17), Machine Learning, Data Mining, and Evolvable Hardware. The wide applicability of our approaches results from the multiplicity of problems that can be characterized as the Constraint Satisfaction Problems. [[Give more references and check numbers.]]
1.7.2. Origins of our main quantum search idea.
This book takes one of its inspirations from the paper by Lin, Thornton and Perkowski [Li06]. This paper can be explained as an application of an exhaustive search speed-up by classical Grover algorithm to create the best Fixed Polarity Reed-Muller Form (FPRM). This circuit is found for a given truth table of positive and negative examples. These “examples” (using the terminology of machine learning) are called  “minterms” in the area of logic synthesis.  Such FPRM form is a type of structured logic expression that should be as simple as possible and that should separate the truth from the false. Thus, for all minterm examples categorized as “false” (negative examples, zero-minterms) the value of the expression is false and for all minterm examples categorized as “true” (positive examples or “ones” in the truth table) the value of the expression is true.
Careful analysis of the approach from [Li06], however, reveals that this idea can be applied with little modification to an incompletely specified function, thus becoming applicable in Data Mining and Machine Learning [Dill01, Koza94, Koza99]. 
Let us explain the above idea on a simple example of inducing formula from a set of examples.  A set of positive and negative examples is collected by observing successes or failures of various pairs of humans, related to their character, social position, physical properties, etc. Next an ideal life partner is induced from this set – it may be described by an expression “(Beautiful and Smart) ( Rich”. This formula means that the candidate person has to be either “beautiful and smart” or rich but not all positive properties at once: beautiful smart and rich (somebody who is beautiful, smart and rich may drop his partner soon, which was reflected in the particular set of specific examples given to the learning tool). Denoting B = Beautiful, S = Smart, and R = Rich, the learned (Fixed Polarity) Reed-Muller expression is BS ( R. This is a Positive Polarity formula (i.e. all variables are not negated), possibly realized in a single (quantum) Toffoli gate. Thus, a logic formula that generalizes the results from all examples is returned as the result of learning. This learning process can be a classical Machine Learning, or a Quantum Machine Learning which is presented in chapter 17. 
Our conclusion of this generalization is very powerful – every problem that can be solved using a “pure” Genetic Algorithm or a Constraint Satisfaction algorithm can be solved using a quantum search algorithm based on the Grover Algorithm or similar Grover-based quantum algorithms.

This observation applies to all algorithms from binary logic synthesis, Constraint Satisfaction based problem-solving, predicate calculus, integer programming and other combinatorial algorithms that appeared and continue to appear in literature. 
Our approach applies also to the data that are incomplete (i.e. there are unknowns, or examples without positive or negative characterizations in the data). Thus we can construct or “build” a logical expression (in  example above - the FPRM expression) to satisfy the behavioral criteria.  As a new method of logic synthesis or Machine Learning, the Quantum Search, as this one, offers a unique approach to automatic logic design or "quantum evolvable hardware". We can speculate that future evolvable hardware will be a quantum accelerator equipped with different “universal” components. These components will be in theory “universal” (such as SAT is universal in classical CSP) but practically they will be only “wide range” components. These components will be created for particular applications such as:  Grover Algorithm for SAT, maximum clique, SOP minimization, FPRM, GRM, and ESOP synthesis, Quantum Walsh and Quantum Fourier Algorithms for image matching or spectral coefficients minimization for structured forms of learning, as well as other learning, problem-solving, pattern recognition and vision methods.  
The “logic circuit” (equivalently, the “solution specification”) is designed by evolutionary means and the process is entirely "hands-off" for the user.  This is however not a biological “Darwinian evolution”, but the evolution of the superposed (quantum) states in a quantum computer. This computer is intentionally designed by humans to use quantum evolution in order to solve certain class of problems. Like in FPGAs, each class of problems requires new computer hardware, in this case a new oracle. The beauty of the proposed here method is that problems can be solved without explicit computer programming.  We just use the general quantum search algorithm itself.  While the general search mechanism (of Grover) is universal, each specific problem is described by the user as a specific oracle. 
Observe that in future problem-solving systems, the parameterized descriptions of many problems will be created by designers. This will be similar to how it is done now in the areas of “intellectual property design” and “circuit generators and hardware compilers”, in which the sophisticated blocks are designed in hardware languages such as Verilog and VHDL. Because the oracles for classes of problems are similar, in the further future certain “smart software generators” will be written to create parameterized descriptions, similarly as it is done now in software generators of VHDL or Verilog programs that are written in  Matlab language or the  languages of Artificial Intelligence (AI). There exists therefore a clear path from the FPGA fast prototyping methods that are at the forefront of CAD tools in year 2011 to the future quantum CSP tools for quantum computers.
Further, let us observe that in theory, a single technique is applicable to solve all CSP  problems (because all problems such as graph coloring or SOP minimization can be polynomially reduced to a Boolean Satisfiability formula - the SAT problem). Such approach is theoretically feasible in classical computers, but only sometimes it is practical. Our quantum search has perhaps similar properties: although in theory we can reduce all problems to Quantum SAT, a more efficient approach is when the user/designer disposes several types of reduction specified as software modules to be used. 

In our book we explain in full all necessary details of the quantum algorithms by Deutsch, Deutsch-Jozsa, Grover, Simon, Hogg and Cerf-Wililams-Grover. This is done for completeness of the book, but it is expected that the reader interested in all mathematical formalisms should study for instance  the Chuang/Nielsen textbook [Nielsen00]. 
1.8. Summary of main concepts and ideas
Concluding, there are several main ideas  focused on in this book: 
1. Various models of using quantum mechanics ideas in robotics are introduced that include: Quantum Braitenberg Vehicles, Quantum Subsumption Architectures, Quantum Fuzzy Circuits, quantum emotional robots, Quantum Automata, Quantum Spectral methods, Quantum Search and Quantum Constraints Satisfaction.

2. A new logic family of algebra is introduced. New families based on affine gates are used and new algorithms are created for them. The practicality of this new extension to AND/EXOR Logic is demonstrated. These algebraic forms realized as quantum arrays are highly testable. This is a fundament of designing quantum circuits used in quantum algorithms.
3. The algebraic forms realized as quantum arrays are practically realizable in NMR and new quantum hardware technologies (as shown in Chapter 4). This material allows the reader to practically program NMR or Ion-Trap quantum computers for arbitrary permutative functions.  
4. Search algorithms for various classes of circuits: SOP, PPRM, FPRM, GRM and ESOP circuits and general reversible circuits have been proposed. The algorithms are unaffected by the degree to which the problems were completely specified (i.e. a large or small number of “don’t cares” is unimportant).  This new learning meta-algorithm is the historically second quantum algorithm for logic synthesis, and the first algorithm for incompletely specified functions thus leading to Machine Learning applications. The goal is to demonstrate that the method is applicable to many benchmarks, for the logic minimization/synthesis of binary logic hardware circuits, Knowledge Discovery for Data Mining, off-line Evolvable Hardware development, and Machine Learning.

5. The QSPS quantum evolvable hardware system has been invented and explained, it was also simulated using Matlab and a general-purpose quantum simulator QUIDPRO to prove the validity of our approach. We simulated the hardware for graph coloring, SAT, FPRM, GRM, ESOP and other circuit types, but for all algebraic extensions discussed in this book the same can be done. The combined search strategies originally developed in [Perkowski82] and extended in [Brown90], [Juling Liu], and [Dill] have been extended to parallel quantum computing, modified and simulated as the QSPS algorithm with improved behavior. 

1.9. Guide to the contents of chapters.
This book takes background and ideas from several fields of physics, mathematics, computer science and computer engineering. We wanted also the   book to be as much as possible self-contained and accessible to not sophisticated readers. Our goal was predominantly to explain in an easy engineering text several complicated concepts that appeared so far only in mathematics, physics, or computer science journals and books. Unifying, simplifying and binding together were thus few of the tasks of this book. Because several sub-areas of this book are interlinked to other sub-areas in many ways, organizing the text in a linear manner was not easy. Below we provide short information about the contents of each chapter and how the chapters are interconnected.

1. Chapter 1 (Marek Perkowski ) is an introduction to the presented research. It presents the motivation and goals of this book and its main concepts from the bird’s eye point of view – no details just basic concepts. However, to understand fully the contents of this chapter the reader should be familiar with the next chapters of the book first. Chapter 1 should be thus read again after reading the entire book.
2. Chapter 2 (Arushi Raghuvanshi and Marek Perkowski ) introduces quantum notation and basic concepts, quantum gates and circuits. It illustrates how to use these idea in practical robots – Quantum Braitenberg Vehicles that generalize the original Vehicles of Braitenberg [ref Braitenberg] to fuzzy and quantum logic.
3. Chapter 3 (Arushi Raghuvanshi and Marek Perkowski ) is about Quantum Fuzzy circuits. We demonstrate several types of robot architectures and emotional robots that use concepts of fuzzy logic and its extensions to quantum.
4. Chapter 4 (Marek Perkowski, Sazzad Hossain and Sidharth Dhawan) presents the design of quantum circuits on the lowest level – electromagnetic pulses for NMR. Optimization of such circuits using search methods is presented and various basic gates are designed. This level of detail helps to formulate realistic costs of gates to be used in the next chapters. For instance, we learn how inexpensive are the quantum NOT and CNOT gates as compared to the quantum Toffoli gates. To demonstrate that the reversible logic synthesis methods from chapters 5 – 9 are general and applicable not only to NMR technology. The methods presented in this chapter will allow to design quantum controllers, automata, sensors and communication circuits of wide applications.
5. Chapter 5 (Marek Perkowski and Sazzad Hossain) discusses the problems of designing larger quantum gates from small primitives and the links between low level and medium level synthesis of quantum (permutative) circuits. Chapter 5 is the background material for the book and it is based mostly on the literature. The concepts of basic expansions in AND/EXOR logic, data structures and logic structures that are fundaments for the research of next chapters are introduced. Because the introduced in this book new structures such as the affine gates are the extensions of the existing structures, we present the basic material in all necessary detail.
6.  Chapter 6 (Marek Perkowski, Edison Tsai, and Sazzad Hossain) introduces decision trees and diagrams based on Davio expansions. The concept of polarity search is also explained in a simple way that will allow to explain its use not only for FPRMs but for arbitrary linearly-independent families of forms. This chapter introduces a new powerful concept of affine gates and generator of circuits with such gates. 
7. Chapter 7 (Marek Perkowski, and ?? Dipal? Kusugal, Martin? Hawash? Nouraddin?) discusses synthesis methods for quantum permutative circuits without ancilla bits.

8. Chapter 8 (Maher Hawash and Marek Perkowski) presents synthesis of multi-output permutative quantum circuits without ancilla qubits. These methods start from such algorithms as MMD and Agrawal / Jha.
9. Chapter 9 (Maher Hawash and Marek Perkowski) discusses synthesis of multiple-valued and hybrid quantum circuits  

10. Chapter 10 (Marek Perkowski, Yale Fan  and Sazzad Hossain) is an attempt to explain in as easy way as possible the concept of Grover algorithm, the central topic of this book. We explain first simple algorithms; Deutsch, Deutsch-Jozsa, Bernstein-Vazirani and Simon, making this way our explanation divided to several small pieces, each of them simpler to grasp. Finally the Grover algorithm is explained in full detail and from various points of view. The extensions of Grover and the Hogg algorithm are also presented. Certain intuitions which we found very useful to create new applications are also explained. Multiple-valued version of Grover is also presented. 
11. Chapter 11 (Marek Perkowski and Sazzad Hossain) introduces the concept of universal parallel/sequential search method QSPS based on combining various search methods. This method is applicable to all CSP problems including combinatorial synthesis problems and other problems introduced in this book. It can be used for serial and parallel  quantum computing.
12. Chapter 12 (Marek Perkowski and Sidharth Dhawan) discusses extensions to Grover and various quantum search ideas. We especially concentrate on Cerf-Wiliams-Grover Nested Search Algorithm.
13. Chapter 13 (Marek Perkowski and Sidharth Dhawan) presents encoding  concepts for quantum search algorithms and compares their complexity.

14. Chapter 14  (Marek Perkowski and Sazzad Hossain) is the link between the two parts of the book – a part about designing circuits and a part about designing algorithms (oracles) using blocks realized from these circuits. The chapter presents several practical blocks that are used to build oracles. Most of these blocks are next used in chapters 15 – 19 to construct oracles. All blocks are reversible and realizable with any quantum technology, but are optimized towards NMR-like technologies. The methods that we used to design these blocks are wider than the methods from the first three parts of the book. The design of optimal oracles is a broad subject of study (it is also at its very beginning). The practical examples show that various circuit structures and design approaches are necessary to find the circuits that are reasonably small from the common-sense point of view. Design of quantum blocks, as in classical computing requires human intuition and experience and can not be fully automated in 2011.
15. Chapter 15 (Marek Perkowski and Sazzad Hossain) discusses Constraint Satisfaction problems solved with Grover Oracles. Specifically we illustrate the graph coloring problem. 

16. Chapter 16 (Marek Perkowski and Alan Cheng) discusses crypto-arithmetic puzzles which are models of a wide category of problems in CAD, scheduling, planning, vision and robotics. Although we did not create a methodology to solve all problems of the classes from chapters 15 – 19, we collected enough ideas and examples to create a human-aided methodology of building algorithms and oracles that can be applied to solve new problems of these types.
17. Chapter 17 (Marek Perkowski) introduces the class of constraint satisfaction problems in robotics and argues that the existence of a general tool to solve all these problems more efficiently would mean a breakthrough in robotics. Next we illustrate how all approaches from this book can be made practically applicable to robotics. Finally a new class of problems in Machine Learning and Data Mining which use multi-polarity spectral transforms with Grover algorithm selecting the best polarity is presented (a well-known exponential complexity problem). Some speculations on future research based on these ideas are also given.
18. Chapter 18 (Vamsi Parasa and Marek Perkowski) is about quantum image processing and robot vision. Specifically Quantum Fourier Transform, Walsh, Haar and Hough Quantum Transforms are presented as well as the Pseudo-Polar transform and their applications.
19. Chapter 18  (Steve Bleiler, Aden Ahmed, Faisal Khan, Yale Fan, and Marek Perkowski) presents Quantum Games and Many Body Problems in Robotics
20. Finally chapter 20 (Marek Perkowski) is a comprehensive conclusion of our book. We present new ideas that expand the methods and ideas from this book and we speculate on future research in this area. 

The comparison of methods and algorithm approaches from the book is given in Table 1.1.
To be completed the table below

	Problems\Algorithms
	Linear Search
	Tree Search
	Evolutionary Search
	ECPS Hybrid Search
	QSPS Quantum Search
	
	
	
	

	SAT
	Does not exist
	Popular
	
	Chapter 6
	Chapter 9
	
	
	
	

	Set Covering (Unate covering)
	Does not exist
	Popular
	
	Chapter 6
	Chapter 9
	
	
	
	

	Graph Coloring
	Does not exist
	Popular
	
	Chapter 6
	Chapter 9
	
	
	
	

	GRM
	Zheng[Zeng95]
	Sasao, Debnath, Dill [Sasao95,Debnath98,Dill01]
	Dill [Dill98]
	
	Chapter 9
	
	
	
	

	ESOP
	
	
	
	
	Chapter 9
	
	
	
	

	FPRM
	
	
	
	
	
	
	
	
	

	Maximum Clique
	
	
	
	
	
	
	
	
	


Table 1.1: Various approaches to main synthesis problems of the book.
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